S100B is increased in Parkinson’s disease and ablation protects against MPTP-induced toxicity through the RAGE and TNF-α pathway

نویسندگان

  • Kinnari Sathe
  • Walter Maetzler
  • Johannes D. Lang
  • Ross B. Mounsey
  • Corina Fleckenstein
  • Heather L. Martin
  • Claudia Schulte
  • Sarah Mustafa
  • Matthis Synofzik
  • Zvonimir Vukovic
  • Shigeyoshi Itohara
  • Daniela Berg
  • Peter Teismann
چکیده

Parkinson's disease is a neurodegenerative disorder that can, at least partly, be mimicked by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. S100B is a calcium-binding protein expressed in, and secreted by, astrocytes. There is increasing evidence that S100B acts as a cytokine or damage-associated molecular pattern protein not only in inflammatory but also in neurodegenerative diseases. In this study, we show that S100B protein levels were higher in post-mortem substantia nigra of patients with Parkinson's disease compared with control tissue, and cerebrospinal fluid S100B levels were higher in a large cohort of patients with Parkinson's disease compared with controls. Correspondingly, mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine showed upregulated S100B messenger RNA and protein levels. In turn, ablation of S100B resulted in neuroprotection, reduced microgliosis and reduced expression of both the receptor for advanced glycation endproducts and tumour necrosis factor-α. Our results demonstrate a role of S100B in the pathophysiology of Parkinson's disease. Targeting S100B may emerge as a potential treatment strategy in this disorder.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ellagic Acid Protects the Brain Against 6-Hydroxydopamine Induced Neuroinflammation in a Rat Model of Parkinson’s Disease

Introduction: Neuroinflammation may play as an important risk factor in progressive degeneration of dopaminergic cells. Antioxidants have protective effects against free radicalsinduced neural damage in Parkinson’s disease (PD). In the present study, we examined the effects of ellagic acid (EA) on locomotion and neuroinflammatory biomarkers in a rat model of PD induced by 6-hydroxidopamin...

متن کامل

Receptor for advanced glycation endproducts (RAGE) deficiency protects against MPTP toxicity

Parkinson's disease (PD) is a common neurodegenerative disorder of unknown pathogenesis characterized by the loss of nigrostriatal dopaminergic neurons. Oxidative stress, microglial activation and inflammatory responses seem to contribute to the pathogenesis. The receptor for advanced glycation endproducts (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecu...

متن کامل

The effect of low dose amphetamine in rotenone-induced toxicity in a mice model of Parkinson’s disease

Objective(s): The effects of low dose amphetamine on oxidative stress and rotenone-induced neurotoxicity and liver injury were examined in vivo in a mice model of Parkinson’s disease. Materials and Methods: Male mice were treated with rotenone (1.5 mg/kg, every other day for two weeks, subcutaneously). Mice received either the vehicle or...

متن کامل

WIN55,212-2, a Cannabinoid Receptor Agonist, Protects Against Nigrostriatal Cell Loss in the MPTP Mouse Model of Parkinson’s Disease

Parkinson’s disease (PD) is characterized by the progressive loss of nigrostriatal dopamine (DA) neurons leading to motor disturbances and cognitive impairment. Current pharmacotherapies relieve PD symptoms temporarily but fail to prevent or slow down the disease progression. In this study, we investigated the molecular mechanisms by which the non-selective cannabinoid receptor agonist WIN55,21...

متن کامل

Adrenomedullin protects rat dorsal root ganglion neurons against doxorubicin-induced toxicity by ameliorating oxidative stress

Objective(s): Despite effective anticancer effects, the use of doxorubicin (DOX) is hindered due to its cardio and neurotoxicity. The neuroprotective effect of adrenomedullin (AM) was shown in several studies. The present study aimed to evaluate the possible protective effects of AM against DOX-induced toxicity in dorsal root ganglia (DRGs) neurons. M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 135  شماره 

صفحات  -

تاریخ انتشار 2012